YourLib.net
Твоя библиотека
Главная arrow Введение в философию и методологию науки (Е.В. Ушаков) arrow 0.4. Наука как система знания
0.4. Наука как система знания

0.4. Наука как система знания

   Основные черты научного знания
   Научное знание обладает рядом специфических черт, свойственных только ему. Прежде всего следует прояснить его отношения с обыденным знанием. Кажется естественным мнение, что наука вырастает непосредственно из мира повседневного опыта. Конечно, они не отделены друг от друга пропастью. Между научным и обыденным знанием есть определенная связь (главным образом, генетическая), ведь научное мышление и возникло первоначально на почве опыта обычных жизненных наблюдений, когда не было специальных научных инструментов эмпирического исследования. Однако не следует считать научное знание лишь простым продолжением обыденного опыта, или усовершенствованным здравым смыслом.
   Прежде всего научному знанию присущ особый теоретический фон, позволяющий науке:
   1) придать знанию характер универсальности, которая принципиально превосходит возможности познания единичных ситуаций и явлений;
   2) выйти за рамки узкопрактической заинтересованности, нацеленности на решение конкретных, сиюминутных жизненных проблем (греч. theoreia — “созерцание”).
   Научное знание высокоспециализировано: для него необходим специальный язык, оно включает в себя системы абстрактных объектов, в т.ч. весьма высокого уровня абстракции.
   Когнитивная система науки — это система знаний, полученных в ходе научного познания и отвечающих текущим критериям научности: критериям объективности, доказательности, проверяемости и т.д. Поскольку критерии научности на протяжении истории претерпевают определенные модификации (скажем, в математике меняются представления о строгости доказательства), то предпочитают говорить не о соответствии универсальным критериям, которым должно отвечать научное знание, а о текущих, т.е. современных науке той или иной эпохи, требованиях.
   Каковы же основные черты научного знания согласно требованиям научности ?
   Среди основных черт научного знания обычно называют следующие:
   1) всеобщность;
   2) необходимость;
   3) системность;
   4) проверяемость.
   Остановимся на них подробнее.
   1. Предметом научного знания являются не единичные феномены, а то всеобщее, что присуще всем без исключения объектам, явлениям, процессам определенного типа, находящимся в сходных условиях, т.е. то повторяющееся, стабильное, универсальное, что лежит в основе многообразных феноменов действительности. Разумеется, научное познание занимается и уникальными явлениями, какие встречаются преимущественно в гуманитарных науках. Но и в этом случае ученый погружает изучаемый предмет в сеть общезначимых понятий, пытается увидеть в нем стабильные черты.
   2. Следует также отметить, что научное знание характеризует не случайные, произвольные опенки и детали изучаемых объектов, а фиксирует их самые глубокие, сущностные, системообразующие, т.е. необходимые стороны (хотя слово “необходимые” в этом контексте некоторые исследователи считают не совсем удачным). В этом ракурсе наиболее репрезентативной формой фиксации и выражения научного знания является научный закон.
   3. Элементы научного знания тесно связаны между собой разнообразными отношениями. Научное знание организовано в виде определенной согласованной структуры, т.е. оно системно. Вне конкретной концептуальной системы научные знания не только не проверяемы, но и вообще невозможны. Например, известный американский философ Уиллард Куайн подчеркивает, что мы всегда проверяем не изолированные высказывания, а всю научную систему в целом, т.к. ее элементы находятся между собой в очень сложных, разветвленных, опосредованных различными связями отношениях. Для иллюстрации этого положения он использует следующую метафору. Здание научной теории представляет собой как бы арку, фундамент которой находится на почве непосредственного научного опыта, а все остальные камни крепятся между собой сугубо внутренними соотношениями, так что устойчивость арки зависит как от надежности фундамента, так и от законов самой архитектуры и от надежности сцепления камней. Подобные “внутренние скрепы” теории — это различного рода логические и содержательные, внутритеоретические связи.
   Но сказанное не означает, что все связи, которые пронизывают теоретическую систему, абсолютно прозрачны и известны. Связи могут быть и достаточно сложными, включающими множество промежуточных звеньев (в т.ч. даже недостаточно проясненных). Вообще в системе научного знания присутствует значительное количество неявных связей, которые играют важную роль как в “скреплении” наличного знания, уже присутствующего в когнитивной структуре, так и в порождении будущего знания, в обнаружении новых закономерностей и структур. Поэтому часто более глубокое изучение взаимосвязей в теоретической системе само является сложным и длительным процессом. Здесь требуется специальный философско-логический анализ действительного содержимого теории. Даже в сугубо формальной логической системе, которая, как кажется на первый взгляд, состоит из тривиальностей, т.к. целиком может быть выведена из аксиомы тождества (вида “А = А”), тоже присутствует некоторое содержательное, хотя и непроявленное, знание. Например, как показал финский логик Я. Хинтикка, в формально-дедуктивной системе содержится информация поверхностная и информация глубинная, которая содержит более существенные, более глубокие логические закономерности.
   Свойство системности научного знания касается не только такой совершенной и проработанной научной единицы, как теория, но и таких более ранних стадий разработки теоретических структур, как проблема и гипотеза. Поэтому получение нового знания уже с первых шагов носит системный характер, хотя сам ученый может в начале работы и не видеть в явной форме многие взаимосвязи. В процессе дальнейшего уточнения теоретической системы происходит прояснение ее внутренней структуры, логических и предметных соотношений, нахождение новых способов упорядочения и систематизации научного знания.
   4. Важнейшей характеристикой научного знания является его проверяемость, или верифицируемость. Конечно, критерии проверяемости меняются с течением времени. В математике раньше были в ходу т.н. неконструктивные доказательства, когда достаточно было показать, что математический объект с требуемыми свойствами может существовать; в математических концепциях с более строгими требованиями (в т.н. конструктивной математике) должна быть показана не только принципиальная возможность существования объекта, но он должен быть явным образом построен силами наличной совокупности допустимых средств.
   Критерии проверяемости и обоснованности, в каждой определенной предметной области конкретны, зависят от содержательных параметров самой этой области. Но эти критерии всегда есть и всегда работают.
   Динамизм и незавершенность науки
   Ряд перечисленных характеристик научного знания может создать впечатление, что оно представляет собой некое статичное образование, полностью верифицированное и доказанное — как бы своеобразный логико-теоретический монолит. На самом деле научное знание — достаточно подвижная когнитивная система, в которой происходят постоянные процессы уточнения, пересмотра различных положений и целых теоретических подсистем. Научное знание не представляет собой какой-то гомогенной целостности. В нем есть и нерешенные проблемы (скажем, в математике — проблема Гольдбаха), есть проблемы, вообще считающиеся вечными (например, в биологии — проблема происхождения жизни), причем иногда, наоборот, проблемы, считавшиеся неразрешимыми, могут дождаться своего решения (примером может служить недавнее доказательство Великой теоремы Ферма), есть различные парадоксы (образцы которых можно видеть в современной физике микромира). Часто в одно и то же время сосуществуют несколько альтернативных, конфликтующих друг с другом теорий, идет постоянная борьба школ и направлений и т.п.
   Эго означает, что содержание научного знания является принципиально открытым для пересмотра и уточнения, для улучшений и значительных новаций. Открытость и корректируемость научного знания выступают важнейшими предпосылками развития когнитивной системы науки. Научное знание динамичное, подвижное, принципиально незавершенное. Оно находится, как писал И. Кант, в контексте постоянного “продвижения опыта”, т.е. в режиме непрерывного совершенствования и расширения. Или, как комментирует слова И. Канта его последователь Э. Кассирер, “опыт для нас — не завершенный продукт, а процесс, который формируется в движении. Мы можем определить условия этого процесса, но не его конец”.
   Итак, система научного знания динамична, принципиально открыта, корректируема.
   Единицы научного знания
   При изучении научного познания прежде всего необходимо вычленить единицы, подлежащие анализу. Однако оказывается, что выделение единиц анализа представляет собой проблему. Что действительно следует считать базовыми элементами научных знаний? Ведь в когнитивную систему науки входят самые разные составляющие: законы, принципы, понятия, постулаты, гипотезы, правила, методы, факты, модели и т.д. Эго означает, что когнитивная система науки полиструктурна: ее можно рассматривать и как систему теорий, и как систему моделей, и как процедурно-операционную систему. Какие же устойчивые формы научного знания и входящие в них элементы подлежат изучению в первую очередь?
   Традиционно единицей логико-методологического анализа научного знания выступала научная теория как достаточно замкнутое и стабильное концептуальное образование. Однако к настоящему времени развито множество других подходов. Здесь достаточно привести несколько примеров:
   1) изучению подлежат общепризнанные образцы научной деятельности и связанные с ними, разделяемые научным сообществом системы представлений — “парадигмы” (Т. Кун);
   2) наука рассматривается как совокупность моделей, где теоретические знания непосредственно опираются на системы приложений — структуралистский подход Дж. Снида, В. Штегмюллера и др.;
   3) предлагают анализировать научное знание в терминах познавательных традиций — исследовательские традиции (Л. Лаудан), экспериментальные традиции (П. Галисон);
   4) предлагают изучать краткосрочные периоды конкретных научных практик (Ф. Китчер).
   Предлагают использовать в качестве единицы анализа и такие более крупные, чем теория, образования, как:
   1) взаимосвязанные серии теорий, или научно-исследовательские программы (И. Лакатос);
   2) области (англ. domains) (Д. Шейпир) и научные дисциплины (B.C. Степин) как системы сложно организованных теоретических знаний.
   Во всяком случае, на фоне этого многообразия предложений разумно выдвинуть следующее требование: концептуальные образования, претендующие на роль базовых структур научного знания и, соответственно, на роль единиц логико-методологического анализа, должны обладать такими свойствами, как самостоятельность, т.е. несводимость к другим концептуальным формам и возможность существовать в относительно изолированном виде; наличие в них устойчивого содержания, которое является относительно замкнутым и может быть интерпретировано в других концептуальных формах; достаточная информативность заключенного в них содержания, т.е. они должны репрезентировать действительно существенные для науки массивы знаний.
   Ряд таких форм будет рассмотрен нами в следующем разделе (прежде всего в главе 3).

 
< Пред.   След. >