YourLib.net
Твоя библиотека
Главная arrow Введение в философию и методологию науки (Е.В. Ушаков) arrow 2.4. Эксперимент
2.4. Эксперимент

2.4. Эксперимент

   Эксперимент (лат. experimentum — “опыт, проба, испытание”) как общенаучный метод занимает важнейшее, если не центральное место в методологии современной науки. Эксперимент представляет собой исследовательскую ситуацию изучения явления в специально создаваемых, контролируемых условиях, позволяющих активно управлять ходом данного процесса, т.е. вмешиваться в него и видоизменять его в соответствии с исследовательскими задачами, а также воспроизводить изучаемое явление при воспроизведении данных условий. Задача исследователя-экспериментатора — изолировать изучаемое явление от несущественных влияний, выделить интересующий его феномен в “чистом виде”. Таким образом, в эксперименте, в отличие от наблюдения, создаются условия для более интенсивного анализа, для активного и сознательного воздействия на исследуемые объекты, часто с глубоким вмешательством в те или иные процессы. Конечно, в реальной экспериментальной практике далеко не всегда удается действительно овладеть изучаемым явлением, т.е. научиться вызывать его, управлять им, модифицировать в нужную сторону и т.п. Однако цель, которую преследует экспериментальная деятельность, состоит именно в этом — в достижении максимально возможного уровня управления данным процессом. Эго является методологическим идеалом экспериментального подхода.
   Очевидно, что эксперимент является более мощным исследовательским средством, чем наблюдение. Ведь эксперимент по своему предназначению направлен на интенсификацию опыта, в отличие от экстенсивно ориентированного наблюдения. К несомненным достоинствам экспериментального метода можно отнести такие, как воспроизводимость данного явления тогда, когда это требуется; варьируемость экспериментальной среды, благодаря чему ученый может изучать объект в самых разных условиях, вводить в действие новые факторы и т.п.; возможность добиваться достаточно высокой достоверности получаемых результатов; (возможность создавать такие процессы, явления, свойства объектов, которые в естественном виде в природе не существуют.
   Экспериментальный метод в истории науки
   Прежде всего необходимо четко различать нижеследующее:
   1) экспериментирование вообще как вид познавательной деятельности, т.е. как особую поисковую активность. Целью такой активности, во многом спонтанной, неупорядоченной, иногда включающей игровые моменты, являются испытание и расширение собственных возможностей, общая “разведка” и освоение природной среды. Ярким примером такой когнитивно-исследовательской деятельности служат игровые манипуляции, которые проводят дети с незнакомым предметом; это феномен, хорошо изученный в психологической науке. Конечно, такого рода экспериментирование было присуще человеку во все исторические эпохи. Так, историки говорят о существовании неких зачатков экспериментирования в античной науке (в военном деле, в механике) и в Средние века (например, в оптике). Но лишь в эпоху Возрождения и с началом Нового времени поисковая экспериментальная деятельность достигает высокой степени активности; интересно, что вначале это происходит в большей степени в искусстве, чем в научном познании (впрочем, в ту пору наука и искусство еще не разъединялись, а скорее, согласовывались друг с другом). Показательным примером здесь являются поиски и достижения итальянских художников Возрождения в области перспективы или длительный процесс экспериментирования в музыке в XVI-XVII вв. по созданию равномерных интервальных соотношений музыкального строя;
   2) научный эксперимент как осознанный методологический принцип. Формирующийся в начале Научного времени экспериментальный подход становится основой нового естествознания вообще. Заслуга в разработке эксперимента как основы научной методологии принадлежит прежде всего Галилео Галилею (1564-1642), который в конце XVI в. соединил экспериментальный подход с математическим мышлением и дал первое теоретическое осмысление этого методологического принципа. Современник Г. Галилея Фрэнсис Бэкон (1561-1626) дал развернутое изложение экспериментального метода как программы создания новой науки. С начала Нового времени, с периода, называемого научной революцией XVI—XVH вв., экспериментальное естествознание становится символом науки вообще, образцом научного метода. До наших дней экспериментальный подход занимает ведущую позицию в эмпирических науках.
   Структура эксперимента
   В нее включаются:
   1) субъект, проводящего экспериментальное исследование, или экспериментатор
   2) исследуемый объект;
   3) условия и обстоятельства экспериментирования, к которым относят конкретные условия времени и места, технические средства экспериментирования (прежде всего экспериментальную установку, а также сопутствующие инструменты и приборы) и теоретический контекст, поддерживающий данную исследовательскую ситуацию.
   Логическая схема эксперимента
   Терминология экспериментального подхода включает следующие понятия. Все явления, факторы, воздействия, состояния, которые могут изменяться в данной исследовательской ситуации и принимать различные значения, называются переменными. Эго могут быть как количественные величины, подлежащие измерению, так и неизмеряемые качественные состояния. Каждой переменной соответствует какое-либо число (но не менее двух) ее возможных значений, т.е. область значений переменной. Среди переменных, включенных в экспериментальную ситуацию, есть непустое множество переменных, которыми исследователь может управлять, меняя их значение. Эти переменные (как правило, это определенные виды воздействий, которые использует исследователь в данной ситуации) называются независимой переменной. Те переменные, которые, наоборот, изменяются при изменениях независимых переменных, называются зависимыми переменными. И наконец, существует еще некоторая совокупность факторов, которые не являются предметом прямого исследовательского интереса, но оказывают дополнительное воздействие на зависимую переменную, затрудняя изучение связи зависимой и независимой переменных и внося неопределенность в результаты эксперимента. Они называются побочными факторами. Очень простой иллюстрацией данной схемы может служить физиологический эксперимент по определению зависимости частоты дыхания испытуемого от выполняемой им физической нагрузки. Здесь дозируемая физическая нагрузка будет независимой переменной, изучаемая частота дыхания — зависимой переменной, а побочным фактором может выступать, скажем, содержание углекислоты в физиологической лаборатории: когда в помещении с недостаточной вентиляцией становится душно, у испытуемого соответственно возрастает частота дыхания, что создает помехи в достижении цели эксперимента.
   Простейшая схема экспериментальной ситуации, которая на самом деле представляет собой структуру классического однофакторного эксперимента, состоит только из двух переменных — независимой и зависимой (плюс побочные факторы) (см. рис. 1). В общем случае задачами экспериментатора являются устранение (или стабилизация) побочных факторов и выделение в чистом виде структуры “независимая переменная -> зависимая переменная”.
   Легко видеть, что структура “независимая переменная - > зависимая переменная” обнаруживает значительное родство с математическим по-

Простейшая схема экспериментальной ситуации

нятием функции: оно отражает идею зависимости одной переменной от другой, “аргумент функции -> значение функции” (где аргумент пробегает область определения данной функции, а значение — соответственно, область значений). Действительно, с началом Нового времени происходит не только становление нового экспериментального метода в естествознании, но и практически синхронно этому разработка понятия функции в математике (хотя общие формулировки понятия функции были даны лишь в XVIII в.).
   Итак, экспериментатор в ходе исследования пытается вмешаться в сам механизм протекания изучаемого процесса, в структуру того или иного явления. Цель эксперимента как исследовательской стратегии — выделить в изучаемом объекте существенные взаимосвязи, или, как мы говорили выше, интенсифицировать, углубить содержание эмпирического материала. Для прояснения общей логической схемы этой стратегии полезно ввести понятие идеального эксперимента (1). Это абстракция, которая представляет в явном виде и стратегию экспериментатора, и логическую структуру, извлекаемую экспериментатором из исследуемой области.
   В идеальном эксперименте ученый действует в абсолютно благоприятной для него ситуации; в реальности же мы работаем, как правило, лишь в условиях достаточно грубого приближения к ней. Ситуация идеального эксперимента обладает следующими свойствами:
   1) условия экспериментирования являются абсолютно стабильными, т.е. результирующая всех действующих побочных факторов есть величина неизменная;
   2) эксперимент идеально, без искажений, воспроизводим и поддерживаем в этом состоянии, т.е. он может быть проведен сколь угодно много раз и продолжаться сколь угодно долго, так что в ходе эксперимента продуцируется бесконечная совокупность однородных данных;
   3) экспериментальная ситуация полностью отражает те естественные ситуации, абстракцией которых она является, т.е. результаты, полученные в идеальном эксперименте, являются адекватно экстраполируемыми на определенный класс реальных ситуаций.
   Чем больше соответствует реально проводимый эксперимент по своим условиям идеальному эксперименту, т.е. чем он больше похож на идеальную схему, тем он лучше с точки зрения его научной значимости. Для оценки этого качества эксперимента используют термин валидность (лат. validus — “сильный, действенный, годный”). Валидность — это в некотором смысле степень совершенства эксперимента.Для более детальной оценки предлагают (Р. Готтсданкер, Д. Кэмпбелл и др.) различать валидность внутреннюю и внешнюю. Внутренняя валидность оценивает само планирование эксперимента, его организацию, его внутреннюю логику. Если мы достаточно надежно устранили побочные влияния, почти как в идеальном эксперименте, то эксперимент обладает внутренней валидностью. В противном случае его можно назвать неудачным. Если результаты, полученные в эксперименте, идеально экстраполируемы на изучаемую предметную область, т.е. на класс реальных ситуаций, то эксперимент обладает внешней валидностью. В противном случае его можно назвать неадекватным. Таким образом, эксперимент должен быть и удачно спланирован, и экстраполируем по получаемым в нем результатам. Примером эксперимента с недостаточной внутренней валидностью может служить приведенный выше пример физиологического эксперимента, где не были учтены побочные факторы (возрастание углекислоты в воздухе лаборатории). Иллюстрацией темы внешней валидности эксперимента является типичная проблема экспериментальной биологии — расхождение между результатами, полученными в искусственных условиях (in vitro), и ожидаемыми результатами в естественных условиях (in vivo), когда встает задача экстраполируемости лабораторных данных на естественные ситуации.
   Существенная и весьма трудоемкая часть работы экспериментатора как раз и состоит в создании условий, приближающих данную исследовательскую ситуацию к схеме идеального эксперимента. Для этого он проводит нейтрализацию побочных факторов, добивается стабильного воспроизведения данного эффекта и поддержания его, обеспечивает условия достоверности фиксируемого эффекта (т.н. контроль эксперимента — использование отдельной совокупности объектов как контрольной системы, служащей для сравнения с непосредственно изучаемой системой), решает вопросы применимости полученных результатов к классу естественных ситуаций.
   Кроме того, выделив искомую зависимость, убедившись в ее постоянстве и воспроизводимости, экспериментатор исследует также ее характер (выражается ли она какой-либо математической функцией, представляет ли она собой какую-то степень корреляции, объясняется ли она какими-либо причинно-следственными связями и т.п.).
   Классификация экспериментов
   Назовем некоторые основания классификации. К разновидностям экспериментов относят:
   1) по условиям проведения — естественные и искусственные;
   2) по целям исследования — преобразующие, контролирующие, констатирующие, поисковые и др.;
   3) по количеству факторов — однофакторные и многофакторные;
   4) по степени контролируемости факторов — активные и пассивные (регистрирующие).
   Рассмотрим некоторые виды экспериментов подробне.
   По условиям проведения. Так называемый естественный эксперимент предполагает изучение объекта в реальных условиях его существования; чаще всего такой вид эксперимента применяется в биологических и гуманитарных науках. Искусственный же эксперимент требует для своего проведения специально создаваемой обстановки. Чаще используется в науках о неживой природе. Его называют также лабораторным экспериментом.
   Искусственный эксперимент имеет такие достоинства, как возможность обеспечить достаточные условия для устранения побочных факторов, т.е. для достижения высокой внутренней валидности, причем с эффективным использованием времени и ресурсов. Однако часто перед ним встает проблема внешней валидности, или экстраполируемости полученных результатов.
   Естественный же эксперимент, наоборот, уступая лабораторному в возможности создания удобных для исследователя условий, демонстрирует приближенный к реальности ход изучаемых процессов. Часто он используется в технических науках для испытания изготовленных объектов, в этом случае его называют натурным. В зависимости от условий непосредственного проведения естественный эксперимент может быть полевым, полигонным, производственным, клиническим и т.п. Главная задача в естественном эксперименте — обеспечить максимальную непринужденность, натуральность окружающей обстановки. В эту задачу, как правило, входят изучение параметров воздействия среды на данный объект, особенностей поведения или функционирования данного объекта и их оценка.
   2. По целям исследования. Эксперимент преобразующий, предполагает активное изменение структуры и функций изучаемого объекта, преднамеренное создание условий, которые должны способствовать появлению его новых качеств.
   Контролирующий эксперимент решает задачу обеспечения контроля над изучаемым объектом, управления объектом с помощью воздействующих факторов с одновременным изучением изменений его состояния в зависимости от воздействия.
   Констатирующий эксперимент представляет собой процедуру проверки какого-либо исходного предположения; целью данного эксперимента является фиксация наличия или отсутствия определенных свойств, отношений, эффектов, состояний и т.п.
   Поисковый эксперимент не имеет всецело систематического характера; часто он является лишь начальной стадией в серии экспериментальных исследований. Проводится в тех ситуациях, когда недостаточно известен комплекс факторов, влияющих на изучаемый объект. Поэтому такой эксперимент носит разведывательный, предварительный характер. Именно для него в большой степени характерно то, что мы говорили выше об экспериментировании как поисковой активности. Поисковый эксперимент занимает достаточно видное место в научном познании, хотя его роль иногда недооценивается методологами из-за влиятельной роли теории в современной эмпирической науке, что будет рассмотрено несколько ниже.
   Важным видом эксперимента является также т.н. решающий эксперимент. Для его проведения характерна ситуация, когда две или несколько гипотез конкурируют друг с другом, претендуя на роль ведущей и примерно одинаково согласуясь с имеющимся эмпирическим базисом. В этом случае решающим экспериментом становится такой, результаты которого однозначно свидетельствуют в пользу одной теоретической системы и опровергают альтернативную ей систему. Для этого, конечно, сам эксперимент должен быть спланирован так, чтобы основной вопрос, решаемый в ходе экспериментального исследования, был сформулирован дихотомически, т.е. чтобы он допускал только два возможных ответа: “да” или “нет”. Примерами решающих экспериментов могут служить: знаменитый “маятник Фуко”, благодаря которому Ж.Б.Л. Фуко продемонстрировал вращение Земли (1851 г.), доказав справедливость теории Коперника и опровергнув теорию Птолемея; опыт О.Ж. Френеля с открытием белого пятна в тени диска, благодаря которому была открыта дифракция света и поддержана волновая теория света в противовес корпускулярной.
   Однако следует заметить, что вопрос о действительной роли решающих экспериментов в развитии научного знания весьма непрост. Например, далеко не всегда решающий эксперимент расценивается современниками как именно решающий; часто это удается понять лишь намного позже. В последующих разделах мы еще вернемся к этой теме.
   3. По количеству факторов — (подробно см. ниже).
   4. По степени контролируемости факторов. Эксперимент активный предполагает возможность существенного управления независимыми переменными. Экспериментатор контролирует “вход” и “выход” исследуемой системы. Но не всегда независимая переменная хорошо контролируема. Иногда мы можем лишь констатировать, что она изменяется, не будучи в состоянии целенаправленно воздействовать на нее. В этом случае имеет место ситуация пассивного, или регистрирующего, эксперимента. Здесь экспериментатор наблюдает за поведением зависимой переменной, стараясь извлечь максимум информации об изучаемых взаимосвязях. Примером может служить изучение шокового процесса в патологической физиологии, когда у лабораторного животного он вызывается искусственно; исследователь следит за функционированием биохимических систем организма в зависимости от стадии шока, не предпринимая активного вмешательства. В экспериментах подобного типа вообще велик удельный вес входящего в них наблюдения.
   Самостоятельным вариантом регистрирующего эксперимента является корреляционное исследование. Некоторые методологи считают его отдельным научным методом, но по своей логической схеме он является частным случаем именно пассивного, регистрирующего эксперимента. Корреляционные исследования часты в гуманитарных науках, где возможность активного вмешательства в изучаемые процессы весьма ограниченна. Например, исследователь выдвигает гипотезу, что дети из многодетных семей быстрее развиваются и демонстрируют большую успеваемость в школе, чем те дети, которые являются в своих семьях единственными. Как можно проверить эту гипотезу? Исследователь не может здесь предпринять какие-либо активные действия, чтобы вызвать и проверить искомые различия, однако у него есть возможность изучить зависимость между уже существующими различиями: для этого он ищет и изучает статистические данные, сопоставляя их между собой. Таким образом, в отличие от активного эксперимента, где осуществляются контролируемые воздействия, в корреляционном анализе проверяются гипотезы о взаимосвязи уже имеющихся данных, проводится ретроспективное изучение уже произошедших событий. Здесь ученый работает с наличными массивами данных, применяет статистические методы их обработки для выделения возможных детерминант определяемых различий. Корреляционное исследование относится к квазиэкспериментальному подходу, о котором мы говорили в предыдущем параграфе: оно сочетает в себе черты и эксперимента, и наблюдения.
   Помимо перечисленных, в методологии науки называют и другие виды экспериментов. Так, выделяют в качестве особой разновидности математический, или вычислительный, эксперимент: в этом случае на основе компьютерной обработки введенных данных получают результат в виде математического решения той или иной задачи. Он применяется в экологии, сейсмологии, аэродинамике и других науках. К преимуществам математического эксперимента, способствовавшим его широкому применению в современной науке, относится, помимо высокой точности проводимых расчетов, то, что в таком исследовании каждый участвующий фактор можно свободно варьировать при отсутствии того риска катастрофических последствий, который может возникнуть в натурном эксперименте. Математический эксперимент имеет черты, относящиеся к методу моделирования; в § 2.5 мы несколько подробнее поговорим о плюсах и минусах применения имитационных математических моделей.
   Еще одним специальным видом экспериментирования, занимающим важное место в научной практике, является мысленный эксперимент. Он применяется учеными как средство расширения доступных им экспериментальных средств. В случае, когда провести реальный эксперимент не представляется возможным, ученый может мысленно воспроизвести и продумать саму экспериментальную ситуацию, получив в ходе этого продумывания важные теоретические результаты. Хрестоматийным примером мысленного эксперимента является мысленное рассмотрение падающего лифта, осуществленное Эйнштейном в ходе разработки теории относительности. Мысленный эксперимент опирается на различные процедуры абстрагирования, идеализации, рассуждений по аналогии. Он сочетает в себе черты как эмпирического, так и теоретического уровней исследования. Как уже говорилось выше (§ 1.4), приемы мысленного экспериментирования, составляющие особый метод конструктивного обоснования абстрактных объектов, играют важнейшую роль в развитии теоретического знания (B.C. Степин).
   Многофакторный эксперимент
   О многофакторном эксперименте следует поговорить отдельно. Не будет преувеличением то утверждение, что разработка методологии многофакторного эксперимента имела революционное значение в развитии методологии эксперимента и научного познания вообще.
   Однофакторный, или классический, эксперимент базировался на том допущении, что исследователь имеет возможность варьировать факторы, участвующие в исследовательской ситуации, по одному. Из этого следует, что экспериментатор способен выделить изучаемую зависимость в чистом виде, может четко вычленять воздействующие на зависимую переменную факторы (может, скажем, как-то упорядочить их во времени и пространстве, “включать” и “выключать” их по своему усмотрению и т.п.). Однако на самом деле исследовательские ситуации часто оказываются гораздо более сложными.
   Выход к более утонченной методологии, имеющей дело с комплексным, принципиально неразделимым действием факторов, был осуществлен прежде всего под влиянием работ английского ученого Рональда Фишера (1890-1962), посвященных агробиологическим экспериментам 1925г. В сложных системах факторы, воздействующие на изучаемый объект, действуют не изолированно и не независимо друг от друга, как это предполагала концепция классического эксперимента, а довольно сложным, взаимосвязанным способом. Они зачастую сцеплены между собой таким образом, что попытка варьировать одну независимую переменную автоматически приводит к некоему замысловатому изменению и других факторов. Это означает, что исследователю приходится иметь дело с особой комплексной организацией этих факторов. Кроме того, исследователя может интересовать действие не изолированных факторов, которое в реальности не встречается, а именно влияние различных возможных комбинаций факторов. Такая постановка вопроса характерна, например, для селекционных исследований. Какой же стратегии следует придерживаться экспериментатору в этом случае?
   Идея многофакторного эксперимента (иногда используют упрощенное название факторный эксперимент) состоит в следующем. Исследователь может варьировать независимые переменные как комплекс, т.е. одновременно сразу несколько; после серии экспериментов полученные результаты должны быть подвергнуты специальному статистическому анализу, где каждый участвующий фактор будет оценен по результатам всех опытов данной серии. Используя соответствующие схемы и обрабатывая данные по особым статистическим методикам, позволяющим изучать эффективность совместного полифакторного воздействия (методики дисперсионного анализа), исследователь получает картину, отражающую вклад каждого фактора в изменяющихся условиях. В итоге экспериментатор имеет возможность изучать самые сложные комбинации факторов. Причем это осуществляется достаточно экономичным способом, т.к. информативность экспериментов зависит в данном случае не от их количества в серии, а от концептуальной организации исследований.
   Многофакторный эксперимент — мощное средство современной науки. К его достоинствам относятся: эффективность использования времени и средств (ведь проведение ряда экспериментов с отдельными, пофакторными модификациями требует значительных затрат), что выражается прежде всего в сокращении числа опытов, необходимых для решения исследовательской задачи; значительная информативность эксперимента (т.к. получаемый результат показывает удельный вес каждого фактора в их совокупном действии); высокая степень достоверности данных (в то время как при попытке использовать методологию классического эксперимента результаты могут оказаться неудовлетворительными из-за воздействий неподконтрольных факторов).
   Многофакторный эксперимент не просто работает с большим по сравнению с классическим количеством факторов, многофакторный эксперимент представляет собой качественно иной, более эффективный уровень методологического мышления.
   Этапы экспериментального исследования
   Экспериментальное исследование является в развитых дисциплинах обычно достаточно длительным процессом, в котором можно выделить несколько этапов.
   1. Разработка программы эксперимента. Разумеется, экспериментальное исследование должно выполняться только тогда, когда в этом есть необходимость, т.е. существует научная задача (или совокупность задач), решение которой может быть получено именно экспериментальным методом. Поэтому на начальном этапе исследователь должен осознать и четко сформулировать свою задачу. Как правило, это происходит в виде выдвижения рабочей гипотезы, после чего исследователь, ориентируясь на имеющиеся знания и материально-технические возможности, разрабатывает адекватную этой гипотезе программу эксперимента (экспериментов); в ходе экспериментов должны быть получены данные, подкрепляющие исходную гипотезу либо опровергающие ее.
   Круг работ, принадлежащих к этой стадии, достаточно обширен. Исследователю необходимо продумать цель, смысл, структуру экспериментов, условия их проведения, подобрать адекватный объект исследования, учитывая и этическую сторону (в медико-биологических и гуманитарных науках), необходимые приборы и материалы. Особое значение имеет разработка адекватной методики. Методика исследования — это упорядоченная совокупность предписаний, необходимая и достаточная для достижения цели исследования. Итогом подготовительной деятельности экспериментатора должна явиться программа эксперимента, в которой указаны все компоненты, требующиеся для проведения экспериментального исследования, описаны объем экспериментальных работ, материально-техническое обеспечение, детально изложена методика, а также рассчитаны сроки выполнения. Важнейшим методологическим требованием к плану эксперимента является его реализуемость. Это означает, что количество задач не должно быть слишком большим; проект должен обладать прозрачной логической структурой, отличаться максимальной простотой, наглядностью, удобством в применении. На стадии разработки программы нет мелочей, все должно быть тщательно продумано и упорядочено.
   План эксперимента — это определенная логическая схема, выбранная для достижения исследовательских целей. В англоязычной литературе также употребляется термин “дизайн” (design) эксперимента. Следует отметить, что современная научная методология обеспечивает серьезную концептуальную поддержку стадии планирования эксперимента. Так, существует специальная прикладная математическая дисциплина — математическая теория эксперимента. Среди массы источников, посвященных этой теме, достаточно указать на работы В.В. Налимова1, известного также своими философскими сочинениями. Математическая теория эксперимента разрабатывает условия оптимального планирования исследований. Она содержит ряд концепций последовательного эксперимента, многофакторного эксперимента (вкратце описанного выше), рандомизации, оптимального использования факторного пространства и др. Эти теории совершенствуют стратегию исследователя, способствуют успешному достижению целей. Для иллюстрации назовем концепцию последовательного эксперимента, ее предложил в 1943 г. А. Вальд. Это пошаговая стратегия, главной идеей которой является деление исследовательской задачи на последовательные этапы; при выполнении этой стратегии каждый последующий шаг исследования зависит от результатов анализа предыдущего шага.
   Для нужд исследователей сейчас имеются специальные каталоги планов эксперимента, в которых приводятся сравнительные оценки различных экспериментальных дизайнов и даются рекомендации по их выбору в сответствии с конкретными условиями исследований. Но в любой ситуации, использует ли исследователь готовые схемы экспериментов или сталкивается с каким-то особым случаем, требующим от него самостоятельного планирования, ведущим принципом на стадии разработки программы опытов остается прекрасное правило французского физиолога и патолога Клода Бернара (1813-1878): “Нужно заботиться не столько об увеличении числа экспериментов, сколько о том, чтобы свести их к небольшому количеству решающих опытов”.
   2. Проведение экспериментального исследования. Непосредственное проведение исследований является для экспериментатора наиболее напряженным, динамичным этапом работы, требующим от ученого инициативности, быстроты реакции и внимания. Будучи включенным в режим экспериментирования, исследователь должен следить за поддержанием стандартных условий эксперимента, систематически регистрировать, оценивать, осмысливать происходящие события и их характеристики — их частоту, интенсивность, какие-либо количественные параметры и т.п.; оказывать, если это возможно, направленное воздействие на изучаемый объект, управляя независимыми переменными, варьируя и дозируя их. Разумеется, экспериментатор опирается на имеющийся у него план, но использует его с известной долей инициативы, т.к. вполне возможны неожиданные изменения ситуации.
   Важную роль в ходе этой стадии работы имеет, как известно, составление и ведение протокола исследования (лабораторного журнала). В протоколе фиксируется информация о ходе эксперимента, действиях экспериментатора, состоянии изучаемого объекта. Протокол является научной основой для последующего анализа и обобщения результатов, а также не только фактическим, но даже юридическим доказательством правомерности сделанных иследователем выводов (есть случаи, когда для присуждения ученой степени комиссии требовалась проверка фактических данных по первичным документам исследования). Поэтому к записям протокола приложимо требование точности и подробности: исследовательский протокол должен быть изначально ориентирован на достижение интерсубъективной значимости полученных результатов.
   Вообще в работе экспериментатора как на предварительной стадии, так и в ходе проведения исследования должно быть внимательное отношение к деталям. Наблюдательность, точность, аккуратность, даже некоторая педантичность — важнейшие добродетели экспериментатора; эти качества отличают профессионала от дилетанта. И, конечно, для занятий экспериментальной наукой требуется особый талант экспериментатора. В экспериментальной науке, как, впрочем, и во всех других видах научной деятельности, многое зависит от личности исследователя, ярко видна роль субъекта как непосредственного автора научной работы.
   Не следует забывать и о том, что в ходе реализации программы эксперимента исследователь не перестает мыслить теоретически. Уже на стадии проведения экспериментального исследования ученый осуществляет первичную обработку получаемых им результатов, дает им оценку и решает вопрос о дальнейшем ходе эксперимента. Предварительная обработка данных позволяет исследователю адекватно откликаться на изменения ситуации, варьировать нужные параметры, активно управлять процессом. Уже на этой стадии ученый может столкнуться с данными, имеющими принципиальное теоретическое значение, поэтому уже здесь эксперимент непосредственно встречается с теоретизированием.
   3. Анализ и обобщение результатов эксперимента. Эта стадия завершает экспериментальное исследование. Здесь исследователь проводит общий анализ достигнутых результатов. В ходе непосредственной экспериментальной работы часто трудно бывает уяснить суть происходящего, увидеть ее за сочетанием факторов и изменением переменных, а ведь для науки важны не эмпирические данные сами по себе, в чистом виде, а стоящие за ними смыслы, их теоретическая ценность. Именно осмысление проведенного исследования, т.е. содержательная интерпретация первичного материала, и составляет задачу третьей стадии. Прежде всего исследователь оценивает сами полученные данные — насколько они отвечают статистическим требованиям, не содержат ли они систематические ошибки и артефакты (искусственно произведенные лабораторные эффекты, не имеющие объективного значения). Далее исследователь производит сопоставление исходной гипотезы с полученными данными. В случае расхождения приходится решать вопрос либо о необходимости скорректировать исходные теоретические положения, либо о достоверности экспериментального исследования. Таким образом, исследователь принимает решение о дальнейшей экспериментальной деятельности: считать ли основную часть работы завершенной, а цель эксперимента— достигнутой, или провести дополнительный сбор информации и перейти к планированию новой серии исследований, а работу считать неудачной и требующей повторного выполнения и т.п.
   На этой стадии изучаемый объект как бы восстанавливается во всей полноте связей тех его отдельных сторон, которые были искусственно вычленены и разделены в эксперименте. Исследователь должен обобщить полученные данные и сформулировать выводы, которые станут основой для последующих исследований.
   Следует отметить, что, хотя в нашем предыдущем изложении экспериментальное исследование было упрощенно представлено как линейная последовательность этапов, в реальности соотношение этих стадий между собой более сложное. Стадии экспериментального исследования не только логически связаны между собой, но и хронологически пересекаются в реальной научной практике, часто плавно переходя один в другой, так что провести строгое разграничение этапов не всегда представляется возможным. Например, не такой уж редкой является та ситуация, когда ученый в ходе самого исследования оказывается вынужден менять его план и цели, т.е. возникает потребность пересмотреть стадию планирования эксперимента. В целом экспериментальное исследование протекает скорее циклически:

   Разработка программы → Проведение исследований →
   Анализ результатов → Дальнейшая разработка программы → ...

   Возможны и другие структурные соотношения этапов, например те или иные группы экспериментов могут соединяться в определенные блоки, выполняться параллельно, иерархически организованно, с определенными интервалами и т.п.
   Таким образом, в научной практике экспериментальное исследование представляет собой, как правило, не изолированный единичный эксперимент, а некоторую систему взаимосвязанных экспериментальных работ, объединенную общим замыслом и соотнесенную с определенным теоретическим контекстом.
   Эксперимент и теория
   В предыдущем параграфе мы обсуждали тезис о теоретической нагруженности наблюдения. Аналогичное положение может быть выдвинуто для соотношения между экспериментальным исследованием и его теоретическими предпосылками. Так, мы видели, что уже на стадии планирования эксперимента ведущую роль играет общий теоретический замысел, в т.ч. как установки, задаваемые рабочей гипотезой, так и дополнительные методологические теории, способствующие разработке оптимального дизайна эксперимента. Действительно, уже стадия разработки требует привлечения целой совокупности теорий — от непосредственно относящихся к предметной области до различного рода обслуживающих концепций, таких, например, как дополнительные гипотезы о взаимосвязи величин, теоретические представления о самой экспериментальной технике, тем более сложные, чем более сложным является планируемый эксперимент. То же самое касается и остальных стадий исследования. Эмпирическое исследование буквально пронизано теоретическими составляющими. Иными словами, теория предшествует эксперименту.
   Данное положение является общепринятым в современной философии и методологии науки. Отметим, что важный вклад в его обоснование внес К. Поппер. Ему принадлежит известное высказывание о роли теории в эксперименте: “Теория господствует над экспериментальной работой от ее первоначального плана до ее последних штрихов в лаборатории”.
   Однако тезис о доминировании теории над экспериментом следует понимать правильно и не абсолютизировать. При попытке уточнить его содержание обнаруживается, что он имеет несколько смыслов. Так, согласно Я. Хакингу этот тезис имеет более слабый и более сильный варианты. В слабом варианте тезиса утверждается, что (как отмечалось выше) ученый с самого начала работы должен использовать совокупность определенных теорий, являющихся концептуальной поддержкой эксперимента; это утверждение не вызывает сомнения. Однако существует более сильное утверждение, которое несколько преувеличивает теоретическую составляющую в ущерб значимости собственно эмпирической работы; иными словами, эксперимент имеет значение только тогда, когда он является проверкой какой-либо предложенной теории. Но это утверждение заходит слишком далеко; достаточно вспомнить о разнообразии экспериментов, реально проводимых в науке, например о поисковом эксперименте, о котором упоминалось выше. Существуют, кроме того, множество примеров плодотворной экспериментальной деятельности, при которой результаты экспериментов первоначально интерпретировались неадекватно, что не снижало значимости самих эмпирических находок. Так, шотландский физик Д. Брюстер, немало содействовавший становлению волновой теории света, сам придерживался противоположной корпускулярной ньютоновской концепции; однако это не повлияло на значение его открытий: сам он не проверял ту или иную теорию, а просто изучал оптические эффекты.
   Это означает, что конкретные взаимоотношения эксперимента и теории сложны и изменчивы. Следует помнить, что (см. § 2.3) тезис о ведущей роли теории был выдвинут в ходе полемики с неопозитивизмом, благодаря чему и возникла крайность противоположного рода. Не стоит забывать, что собственно экспериментальная часть работы исследователя тоже имеет важное самостоятельное значение. В тезисе о ведущей роли теории в эксперименте отражена прежде всего реальная ситуация в современной, зрелой, высокотеоретизированной науке, например это характерно для физики, где имеется огромный массив теоретических разработок, обширное концептуальное поле различных подходов, идей, математических структур. Однако если мы встретимся с чем-то абсолютно неизвестным, далеко выходящим за рамки привычных теорий, то изучение этого “чего-то” окажется на первых порах почти целиком феноменологическим, не связанным никакой теорией; это будет целиком поисковое, разведывательное исследование.
   Таким образом, экспериментальную деятельность нельзя считать лишь лабораторным “придатком” теоретизирования.
   Автономия экспериментальных практик
   Тема экспериментирования как самостоятельной составляющей научной деятельности стала достаточно заметной совсем недавно, к 80-90-м гг. XX в., когда стал несколько сокращаться перевес теории над экспериментом в философии и методологии науки. Появилось большее понимание того, что экспериментирование, экспериментальная наука в целом имеют более независимое от теорий существование, чем это представлялось в пылу антипозитивистской полемики; в последнее десятилетие выросло количество публикаций, в которых развивается тезис о том, что эксперименты ведут свою собственную жизнь (П. Галисон, Д. Гудинг, А. Франклин и др.). В том числе изучается такой обделенный до недавнего времени вниманием важный аспект научной деятельности, как научная аппаратура, приборы и их “собственная жизнь” в науке, а также обслуживающие их научные практики.
   Для примера укажем на получившие известность исследования Питера Галисона. Ему принадлежит ряд работ, посвященных физике высоких энергий в частности “Образ и логика” (1997). П. Галисон вводит понятие инструментальной традиции: существуют не только теоретические исследовательские традиции (см. § 3.5), но и экспериментальные, имеющие собственную историю; для ученого-экспериментатора продвижение науки вообще выглядит не так, как для теоретика: оно скорее связано с прогрессом в экспериментальных возможностях. Инструментальная традиция — это образование, живущее более долго, чем какой-либо однократный эксперимент либо группа экспериментов, сопряженная с развертыванием какой-то определенной теории. Необходимо понять самостоятельность и сложность инструментальных практик (instrumentation), не смешивать их с теоретическим прогрессом науки. Теория и экспериментирование — это, по П. Галисону, две различные, но взаимосвязанные субкультуры науки.Инструментальные традиции — это определенные группы навыков (skillgroup), связанные с использованием того или иного научного прибора или типа приборов. Так, П. Галисон выделяет в инструментальных практиках две традиции, одна опирается на образ, другая — на логику. Они реализуют определенные способы аргументирования. Например, визуализирующие устройства играют огромную роль в продвижении ряда научных дисциплин (физика микромира, молекулярная биология), при этом они вводят особый тип визуальных доказательств. Устройства логического типа связаны с расчетами, статистическими доказательствами. П. Галисон подробно исследует роль лабораторно-экспериментальных традиций в науке, доказывая, что они являются особой плоскостью научной деятельности.
   Итак, значение экспериментальной деятельности многогранно: она не только подтверждает или опровергает предшествующие ей теоретические положения, но и имеет самостоятельную ценность, выступая важнейшим средством научного продвижения.
   Особенности и ограничения современного научного эксперимента
   К особенностям современного научного эксперимента относят: прежде всего высокий уровень его материально-технического обеспечения, требующий, как правило, работы целого научного коллектива; использование мощных технологий обработки данных (компьютерных методов, схем статистического анализа, использование приемов математического моделирования); взаимодействие подходов из различных областей науки для решения конкретных проблем (например, применение методов физики в биологических исследованиях).
   Однако принцип активного вмешательства, лежащий в основе экспериментального метода, вызывает к жизни ряд проблем. Это прежде всего проблемы этического и технического порядка, накладывающие на экспериментальный метод существенные ограничения. Так, важной темой сегодня является проблема замены экспериментальных вмешательств другими методиками (например, квазиэкспериментированием).
   Далее, важной технической проблемой методологии современного эксперимента является проблема воздействия экспериментальной установки на сам изучаемый объект и устранимые и неустранимые эффекты такого воздействия. Здесь методология эксперимента тоже наталкивается на ряд специфических ограничений, связанных с особенностями изучаемых объектов. (Мы уже касались этих ограничений при обсуждении проблем, связанных с измерительными процедурами, см. § 2.2.) Типичной проблемой является создание артефактов в эмпирических исследованиях, значительно осложняющее решение исследовательских задач. Иллюстрацией этого может служить ситуация в медико-биологических науках, которая приобрела значимость еще в XIX в., когда, например, при использовании солей осмия для фиксации препаратов цитологи затруднялись решить, что же они в действительности наблюдают — структуру самой клетки или же результат индуцированной ученым химической реакции. И сегодня многие научные направления насыщены методиками, повреждающими и искажающими структуру исходного объекта. Эго погружает современный экспериментальный подход в целое море артефактов, так что приходится специально учитывать эту опасность: например, использовать сложные методы статистики, чтобы отличить существенные моменты от незначащих отклонений, привнесенных самим исследующим субъектом.
   Итак, методология современного эксперимента высокоразвитая, сложная, постоянно совершенствующаяся. Столкновение экспериментального подхода с серьезными проблемами и ограничениями стимулирует поиск новых методологических решений: помимо усложнения собственно экспериментальных форм исследования, совершенствуются и такие подходы, как моделирование, наблюдение, а также комбинированные, синтетические подходы.

 
< Пред.   След. >