YourLib.net
Твоя библиотека
Главная arrow Введение в философию и методологию науки (Е.В. Ушаков) arrow 4.1. Становление и развитие научной теории
4.1. Становление и развитие научной теории

4.1. Становление и развитие научной теории

   Процесс становления новой теории — это особая интересная и сложная тема. В настоящем параграфе будут кратко рассмотрены следующие вопросы:
   1) ключевые моменты процесса создания теории. Речь будет идти прежде всего о генезисе теоретической схемы;
   2) объединяющая модель развития научных теорий. Она отражает взаимодействие рассмотренных в главе 3 форм (проблема, гипотеза и т.п.) и рисует обобщенную картину их совместного участия.
   Стимулы, подготовительные стадии
   Что служит толчком к созданию научной теории? Как происходит ее созревание?
   Толчком к разработке и становлению научной теории могут служить различные факторы. Прежде всего роль подобных стимулов могут играть новые факты, особенно имеющие неожиданный характер. Так, интенсивное теоретическое развитие на рубеже ХІХ-ХХ вв., ознаменовавшее переход от классической к новейшей физике, было во многом инициировано открытием таких явлений, как рентгеновское излучение и радиоактивность. Далее важным пусковым фактором является выдвижение новых идей, открывающих иной способ видения и осмысления имеющегося эмпирического материала. Внезапная догадка, смелая гипотеза могут указать пути будущего плодотворного теоретического развития. Примером такой содержательной идеи может служить гипотеза А. Лавуазье о том, что процесс горения представляет собой не реакцию разложения вещества (как считалось тогда), а наоборот, реакцию синтеза; эта идея, которая, как известно, претворилась в программу изучения состава воздуха и привела к открытию кислорода, явилась исходным пунктом радикальных сдвигов и рождения новой химии.
   Ведущим стимулом и поиска новых фактов, и введения новых гипотез является, как правило, наличие существенных проблем в научных областях. К примеру, главной проблемой физики конца XIX в. (как тогда представлялось, близкой к решению) было приведение физической науки к единству, к завершению физики, т.к. в то время казалось, что все фундаментальные физические законы уже открыты. Но на пути разрешения этой главной проблемы стояли некоторые частные, создававшие для ученых стойкие трудности. Попытки справиться с ними с помощью механистических представлений не приводили к успеху. Постоянные неудачи в решении этих проблем свидетельствовали о необходимости пересмотра самой научно-исследовательской программы, связанной с принципами классической физики; однако тогда это еще не было осознано. Данный пример показывает, что для становления новой теории важнейшим моментом является осознание недостаточности старого, ставшего уже традиционным способа решения проблем в данной области и связанной с ним системы теоретических представлений.
   Однако осознание неэффективности устоявшихся подходов является само по себе задачей отнюдь не тривиальной. Иногда для поиска принципиально новых путей развития требуется предварительная деструктивная работа по отношению к старым взглядам. В рассматриваемой нами ситуации рубежа ХІХ-ХХ вв. подобное освобождающее воздействие на ученых имели, как известно, прежде всего работы Эрнста Маха. В них были подвергнуты решительной критике механистические представления и догматизм физического мышления. Влияние Э. Маха в ту пору было огромным, и его выступления, имевшие поистине революционизирующий эффект, во многом способствовали поиску новых путей научно-теоретического поиска (оказав серьезное воздействие и на молодого А. Эйнштейна).
   Понятие о теоретической схеме
   Ключевой момент в выдвижении новой теории — введение и разработка ее опорного идейного комплекса — теоретической схемы. Описывая этот процесс, мы будем опираться на концепцию B.C. Степина, разрабатываемую им на протяжении ряда работ.
   Теоретическая схема — это взаимосогласованная система абстрактных объектов теории. Некоторые ее элементы непосредственно соотнесены с опытом, другие же относятся к эмпирическому базису весьма косвенным образом. Теоретическую схему можно считать весьма отвлеченной моделью тех явлений и взаимодействий, которые рассматриваются теорией; в теоретической схеме сконцентрированы их наиболее существенные характеристики. B.C. Степин выдвигает универсальный методологический тезис: “Формулировки теоретических законов непосредственно относятся к системе теоретических конструктов (абстрактных объектов)”. Причем это касается не только физики (хотя там это видно наиболее отчетливо), но и других наук. Например, собственные системы абстрактных объектов лежат в основе популяционной генетики Харди—Вайнберга, экономического учения Л. Вальраса и многих других теорий; даже в сугубо гуманитарных дисциплинах могут быть выявлены свои слои абстрактных объектов.
   Кроме того, теоретическая схема дает и предельно абстрактную репрезентацию экспериментальных ситуаций, связанных с данной теорией. Система объектов и их взаимоотношений в теоретической схеме воспроизводит в самой общей форме сам тип экспериментально-измерительной практики, которая соответствует эмпирическому полюсу теории. Например, модель атомного ядра Э. Резерфорда — это описание не только атома, но и тех исследовательских ситуаций, через которые он становится виден исследователям.
   Свойства объектов теоретической схемы взаимосовместимы и согласованы так, что видоизменение или устранение каких-либо составляющих теоретической схемы соответственно трансформирует или разрушит всю систему абстракций. Так, в теоретической схеме механики абстрактные объекты и их свойства — сила, материальная точка, пространственно-временная система отсчета и т.д. — подогнаны друг к другу и скоррелированы между собой определенным способом. Дальнейшее наращивание теоретической схемы возможно только путем введения объектов и свойств, совместимых с уже имеющейся совокупностью параметров данной схемы.
   Теоретическая схема характеризуется как с помощью содержательных описаний (например, “воздействие силы способно изменять движение тела”), так и с помощью математических зависимостей. Последнее достигается отображением объектов исходной теоретической схемы на подходящие математические объекты. Например, пространственно-временная система отсчета связывается с декартовыми координатами в евклидовом пространстве. В общем случае математические зависимости (уравнения) и абстрактные объекты схемы являются относительно самостоятельными теоретическими компонентами. Так, одни и те же уравнения могут репрезентировать характеристики разных теоретических схем (например, математический аппарат теории колебаний), и наоборот, теоретические схемы могут существовать относительно независимо от возможных математических интерпретаций. Теоретическая схема выступает посредником между математическим формализмом (как более абстрактным слоем теории) и уровнем эмпирической интерпретации, непосредственно выходящем в экспериментально-измерительную практику.
   В развитых научных областях существуют сложные отношения между теоретическими схемами различных уровней. Следует различать фундаментальную теоретическую схему, служащую концептуальной базой для охватывающей теории, и частные схемы, конкретизирующие фундаментальную схему применительно к различным задачам. Процессы теоретизирования включают как конструирование частных схем, подчиняющихся главной, так и (при фундаментально-теоретическом продвижении) конструктивное обобщение и подведение имеющихся частных схем под фундаментальную.
   Генезис и обоснование теоретической схемы
   Итак, ведущим моментом в создании теории является введение теоретической схемы. В генезисе теоретической схемы можно различить две стадии: выдвижение схемы в качестве гипотезы и ее обоснование. При этом построение частной теоретической схемы непосредственно ориентировано на определенный класс задач; обобщающая же теория строится на основе синтеза имеющихся частных теоретических схем (например, механика Ньютона является сложным обобщением теорий механических колебаний, свободного падения, движения планет и других частных теоретических схем физики). Фундаментальная теоретическая схема, как правило, разрабатывается постепенно, двигаясь путем последовательного синтеза частных законов данной области, сначала близлежащих, затем более отдаленных.
   “Строительным материалом” для разработки теоретической схемы могут служить элементы других схем; ведь в науке происходит постоянный обмен элементами и структурами как внутри научной области, так и между различными науками (например, между химией и физикой, физикой и биологией и т.п.). В развитых естественно-научных областях переносятся не только содержательные понятия, но и готовые схемы математических формализмов. При построении теоретической схемы она вначале вводится как пробная модель, которая накладывается на имеющийся эмпирический и теоретический материал. B.C. Степин прослеживает этот процесс на примере становления электродинамики. Так, Дж. Максвелл для разработки теоретической схемы использовал структуры из механики сплошных сред. Будучи помещенным в новую сетку связей, транслируемый из другой области абстрактный объект приобретает новые признаки. Эго требует специальной “подгонки” объекта к новой системе. Таким образом, в генезисе теоретической схемы важную роль играют процессы переноса абстрактных объектов из других областей и монтажа из них новых гипотетических схем.
   Эти процессы подчинены определенной логике. Так, сам выбор исходных абстрактных объектов не произволен, а во многом задан картиной мира, которую принимает ученый. Здесь следует обратить внимание на существенный момент концепции B.C. Степина — различение теоретической схемы и картины мира. Теоретическая схема — это компонент непосредственно научной теории, ее первичный объект, или фундаментальная идея (см. § 3.4). Картина же мира относится к более широкому контексту, к окружающей теорию философско-научной системе представлений (см. подробнее § 9.1). Так, для научных областей характерны собственные дисциплинарные онтологии — специальные картины мира, аккумулирующие в себе обобщенные характеристики референтов данной дисциплины. Специальные картины мира содержат представления о базовых и производных от них объектах, о причинно-следственных закономерностях, о пространственно-временной структуре реальности. Картинам мира всегда свойственна большая простота охвата явлений по сравнению с научными теориями. Поэтому на одну картину мира может отображаться несколько различных теоретических схем (например, общая механическая картина мира совместима с разными физическими теориями).
   Картина мира позволяет увидеть аналогии между различными научными областями, тем самым она оказывает активное воздействие на процесс выбора абстрактных объектов и сети их взаимоотношений, т.е. на выбор тех исходных составляющих, которые станут каркасом новой теоретической схемы. Иными словами, картина мира предлагает ученому как бы подсказку, откуда следует переносить строительный материал для теоретической схемы. Разумеется, при конструировании новой схемы у ученого может появиться матрица новой картины мира (например, М. Фарадей вышел к представлениям о поле как особой реальности), однако ученый, как правило, не спешит “разворачивать” эти представления в теорию, пока не будет в полной мере разработана и обоснована лежащая в их основе теоретическая схема.
   После переноса абстрактных объектов в новую систему взаимоотношений схема адаптируется к эмпирическому и теоретическому материалу, перестраивается и шлифуется. При адаптации схемы может быть создана принципиально новая теоретическая структура. Здесь также картина мира как общее “изображение” референта теории подсказывает, как следует соединять абстрактные объекты теоретической схемы. Процесс подгонки абстрактных объектов B.C. Степин называет процедурой конструктивного введения их в теоретическую схему. Эго сложный процесс, в котором производятся мысленное манипулирование (и экспериментирование) абстрактными объектами, проверка их свойств на совместимость и т.п. (мы уже касались этой темы в § 1.4).
   Даже то теоретизирование, которое выглядит как чисто математическое выведение систем уравнений, является на самом деле особым конструктивно-содержательным предприятием. На примере деятельности Дж. Максвелла B.C. Степин показывает, что процесс конструирования теоретической схемы происходит как попеременное движение в плоскости математических форм и в плоскости физического содержания. Каждый новый шаг по пути к искомой системе уравнений сопровождается промежуточными содержательными интерпретациями, с помощью которых поддерживается физическая осмысленность теоретической модели. В процессе наращивания теоретической схемы постоянные промежуточные интерпретации являются необходимым компонентом работы, позволяющим осуществлять конструктивное оправдание и подгонку абстрактных объектов теоретической схемы. Сказанное относится и к применению математической гипотезы (см. § 3.3) в современной физике, когда теоретик выдвигает в качестве гипотез сразу теоретические системы высокого уровня общности. Но это смелое и развитое теоретизирование не скрывает того, что здесь также не происходит совершенно свободного “математического фантазирования”; исследователь и в этом случае продолжает опираться на промежуточные интерпретации, сверяться с возможными физическими смыслами систем уравнений, искать их содержательное понимание.
   Теоретическую схему, прошедшую конструктивные процедуры корректировки, можно назвать конструктивно обоснованной. Введение теоретической схемы с ее последующим конструктивным обоснованием — это главная процедура в генезисе теоретических знаний. Она используется не только для разработки частных теоретических схем, но и для конструирования фундаментальной теории.
   Деятельность по разработке и обоснованию теоретической схемы завершается созданием схемы специальной картины мира. Тем самым теоретическая схема получает онтологический статус; ее объектам приписываются черты самой реальности. При этом может оказаться, что полученная схема относительно легко совместима с исходной картиной мира. Но может возникнуть и более сложный и более интересный вариант, когда процесс введения теоретической схемы переходит в последующий процесс перестройки картины мира. Ведь картины мира тоже модифицируются по мере развития науки, хотя и медленнее, чем теоретические схемы.
   Объединяющая модель развития научных теорий
   Теперь перейдем к обобщенному взгляду на динамику становления теорий. Мы видели, что в сложном процессе генезиса и развития научной теории задействованы все формы научного познания, которые рассматривались в главе 3 как единицы логико-методологического анализа. Можно описать их совместное участие в динамике теорий с помощью единой интегрирующей модели, где (см. рис. 6).
   НИП — научно-исследовательская программа
   СКМ — специальная картина мира

 Динамика научного познания

   Общим стимулирующим условием для теоретического продвижения выступает исходная проблемная ситуация, которая должна быть осмыслена учеными как научная проблема. Она является результирующей сочетания как внешних факторов (общественные потребности), так и внутренних (собственные проблемы самой науки). Осознание недостаточности имеющихся средств активизирует научный поиск. Усилия ученых по решению проблемы связаны с анализом фактов и выдвижением новых гипотез, призванных эффективно продвинуть ход изысканий. Существенный прогресс в решении проблемы будет достигнут тогда, когда сформируется определенный комплекс плодотворных идей, который может стать “центром кристаллизации” перспективной теоретической схемы. Итак в результате выдвижения каких-то эвристически ценных гипотез и переноса теоретических структур (из теоретических схем других областей) в сложном процессе анализа и взаимной корректировки общих (картина мира) и специальных (имеющиеся частные схемы) теоретических знаний и эмпирического материала возникает тот или иной теоретический эскиз (теория 1), который можно назвать начальным вариантом созревающей научной теории.
   Однако выдвигаемая теория сталкивается с новыми проблемами. Они частично связаны с нерешенностью исходной проблемы, частично — с теми вопросами, которые вырастают из теоретического эскиза (столкновения с фактами, различных концептуальных неувязок и т.п.). Эго ведет к дальнейшему анализу фактов и выдвижению новых гипотез и т.д., так что следующим опорным пунктом цикла теоретического развития оказывается новая модификация разрабатываемой теории (теория 2). Этот процесс продолжается до состояния, когда теория не сможет успешно справиться с трудностями и стать принятой в среде работающих ученых. В целом весь процесс выглядит как циклическая серия сменяющих друг друга теоретических эскизов в рамках объемлющей их научно-исследовательской программы, которая задает единое направление теоретическому продвижению до тех пор, пока в нем сохраняются ее исходные принципы и допущения, ее ведущая идея.

 
< Пред.   След. >